Logo of Science Foundation Ireland  Logo of the Higher Education Authority, Ireland7 Capacities
Ireland's High-Performance Computing Centre | ICHEC
Home | News | Infrastructure | Outreach | Services | Research | Support | Education & Training | Consultancy | About Us | Login


Title:The effect of remodelling and contractility of the actin cytoskeleton on the shear resistance of single cells: A computational and experimental investigation
Authors:Dowling, E. P., Ronan, W., Ofek, G., Deshpande, V., McMeeking, R. M., Athanasiou, K. A. and McGarry, J. P., 2012
Abstract: The biomechanisms that govern the response of chondrocytes to mechanical stimuli are poorly understood. In this study, a series of in vitro tests are performed, in which single chondrocytes are subjected to shear deformation by a horizontally moving probe. Dramatically different probe force–indentation curves are obtained for untreated cells and for cells in which the actin cytoskeleton has been disrupted. Untreated cells exhibit a rapid increase in force upon probe contact followed by yielding behaviour. Cells in which the contractile actin cytoskeleton was removed exhibit a linear force–indentation response. In order to investigate the mechanisms underlying this behaviour, a three-dimensional active modelling framework incorporating stress fibre (SF) remodelling and contractility is used to simulate the in vitro tests. Simulations reveal that the characteristic force–indentation curve observed for untreated chondrocytes occurs as a result of two factors: (i) yielding of SFs due to stretching of the cytoplasm near the probe and (ii) dissociation of SFs due to reduced cytoplasm tension at the front of the cell. In contrast, a passive hyperelastic model predicts a linear force–indentation curve similar to that observed for cells in which the actin cytoskeleton has been disrupted. This combined modelling–experimental study offers a novel insight into the role of the active contractility and remodelling of the actin cytoskeleton in the response of chondrocytes to mechanical loading.
ICHEC Project:Investigating the Effect of Focal Defects on the Response of Chondrocytes Embedded in an Extracellular Matrix during Articulation
Publication:J R Soc Interface. 2012 Dec 7;9(77):3469-79. doi: 10.1098/rsif.2012.0428
URL: http://dx.doi.org/10.1098/rsif.2012.0428
Status: Published

return to publications list