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Abstract
We report on the implementation of an OpenCL-based design of the Bob Jenkins lookup3 hash function
application on the Virtex 7-based ADM-PCIE-7V3 platform using the new Xilinx SDAccelTMdevelopment
environment. In particular, we demonstrate how to exploit features of the OpenCL programming model
available through SDAccel to improve performance by up to 3.5x relative to a naive OpenCL design of
the application. Our early-stage results strongly indicate that near-optimal high performance, low-energy
software defined solutions on FPGAs can be delivered using SDAccel’s OpenCL development environment
with much shorter turnaround times than through hardware-centric RTL flows.
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Introduction

In this report, we present an OpenCL-based design of a hashing function which forms a core component of memcached
[1], a distributed in-memory key-value store caching layer widely used to reduce access load between web servers and
databases.

Our work has been inspired by recent research investigations on dataflow architectures for key-value stores that can sustain
a consistent 10Gbps line-rate and which bring significant latency benefits through tight coupling of network interface,
memory and compute resources [2]. At the heart of a key-value store architecture, such as memcached, is a hash table,
which in essence determines the memory address of a value as a function of an incoming key. This is achieved by first
applying the chosen hash function to the contents of a key to produce an address in the table. From this location, a pointer
to the address within the value storage area can be retrieved.

In the work reported here, we focus on the hashing function stage only. In particular, we have focused on the OpenCL
design of the Bob Jenkins lookup3 hash function [3], which is used in the open source software version of memcached and
is well known to work effectively over a broad range of key types. This function processes variable sized keys iteratively
in 96bit chunks and each chunk is split into three 32bit numbers, which are added to a set of state variables. Before the
next chunk is read, these state variables are mixed using addition, subtraction and XOR operations. Due to the inherent
feedback loop, the hash function cannot be easily pipelined.

On a broader basis, our investigations have been stimulated by the recent release of the Xilinx SDAccel development
environment [4], which supports OpenCL-based design of energy efficient high throughput solutions on FPGAs. Indeed,
much of the focus of this report is on demonstrating how we have been able to achieve significant performance gains by
exploiting the high-level parallel abstractions afforded through SDAccel’s OpenCL compiler.

The rest of this report is organized as follows: In section 1 we provide a short overview of the sequential Bob Jenkins
hashing function, which acts as the starting point for our discussion around OpenCL-based optimisations. Section 2
provides an overview of our first ”naive” OpenCL hashing function kernel which we evaluate for the first time on the Xilinx
Virtex 7-based ADM-PCIE-7V3. In section 3 we provide an overview of how we have optimised the OpenCL hashing
function kernel further in order to achieve a performance improvement of ⇠3.5x relative to the ”naive” OpenCL kernel and
briefly discuss how we have further implemented lower-level optimisations to achieve a performance improvement of up
⇠187x relative to the naive OpenCL hashing kernel. Finally, we discuss some key conclusions and plans for future work.

1. The sequential Jenkins lookup3 hash function

In this section we provide a brief overview of the sequential Bob Jenkins lookup3 hashing function [3], which is freely
available in the public domain. This hash function, supports a maximum key size of 256 bytes, but in our implementation we
use keys up to a size of 60 bytes. A sequential implementation of the Bob Jenkins lookup3 hash function, hashlittle,
written in C is presented in listing 1. The algorithm has three fundamental stages:

• Combining key length and initialisation value to set up an initial state.

• The mixing of the bits of the keys in 12 byte increments.

• The processing of the remaining bytes of the key.

Listing 1. The Bob Jenkins lookup3 function implemented with C.

1
2 uint32_t hashlittle( const void

*

key, size_t length, uint32_t initval){

3
4 /

*

setting init state

*

/

5 uint32_t a,b,c;

6 a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;

7
8 const uint32_t

*

k = (const uint32_t

*

)key;

9
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10 /

*

mixing

*

/

11 while (length > 12)

12 {

13 a += k[0];

14 b += k[1];

15 c += k[2];

16
17 mix(a,b,c);

18
19 length -= 12;

20 k += 3;

21 }

22
23 /

*

mix remainder

*

/

24 return mixRemainder(a, b, c, k, length);

25 }

The hashlittle function in listing 1 computes the hash of a single key for a given length and initialisation value. The
function in effect reduces the key length by 12 bytes for each mixing iteration. The most computationally expensive part of
the function is the mixing of the bits of a given key. Once a given key reaches a length of less or equal than 12 bytes the
remaining bits are extracted and mixed within the mixRemainder() function.

2. A first OpenCL design of the Jenkins lookup3 hash function

In this section, we describe our first design strategy to enable the lookup3 function on the FPGA using SDAccel (all
results in this report have been obtained using SDAccel v2014.3.5). Taking the C-based function in listing 1 as our base
implementation, our first step in designing an OpenCL implementation of the lookup3 function was to identify the full list
of input arguments and the return values for the OpenCL kernel function. For our initial parallel design, we began with
the strategy that each OpenCL Work Item launched will process one key, and therefore, the number of Work Items

launched should logically equal the number of keys that need to be hashed. The arguments for our initial OpenCL kernel
function are therefore:

• keys: Each key is stored within contiguous blocks of memory. The size of these blocks is equal to the maximum
key size. A buffer consisting of these key blocks forms the input key array to be processed.

• lengths: The buffer consisting of lengths of the keys.

• initvals: The buffer consisting of initialization values of the keys.

• out: The buffer to store the hash value computed by the kernel.

Listing 2. A naive OpenCL kernel function

1
2 __kernel void hashlittle(__global const uint

*

restrict keys,

3 __global const uint

*

restrict lengths,

4 __global const uint

*

restrict initvals,

5 __global uint

*

restrict out){

6
7 const uint id = get_global_id(0);

8
9 const uint length = lengths[id];

10 const uint initval = initvals[id];

11 __global uint

*

k = &keys[id

*

15];

12
13 /

*

setting initial state

*

/

14 uint a,b,c;

15 a = b = c = 0xdeadbeef + ((uint)length) + initval;

16
17 /

*

mixing

*

/

18 while (length > 12){

19 a += k[0];

20 b += k[1];

21 c += k[2];

22
23 mix(a,b,c);

24
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25 length -= 12;

26
27 k += 3;

28 }

29
30 /

*

mix remainder

*

/

31 out[id] = mixRemainder(a, b, c, k, length);

32 }

Each OpenCL Work Item is effectively assigned a key/length/initvals and a location to store the hash value
(out) according to the “global id” of the Work Item. The majority of our design considerations at this stage were
focused on specifying the read/write access patterns from global (off-chip memory) for each Work Item. Since SDAccel
supports this feature, it allowed us to implement and evaluate an initial OpenCL version of lookup3 on the FPGA platform
with relative ease. The initial OpenCL kernel function is shown in listing 2, where henceforth this OpenCL kernel is
referred to as Kernel1.

Table 1 shows the time (in milliseconds) to execute this naive OpenCL kernel for 1, 2, 4 and 8 million keys. The Kernel1
OpenCL implementation was evaluated using a range of Work Group sizes, where each Work Group consists of a
given number of Work Items, specified in the table and throughout the report by WGsize. The observed increase in
performance seen in Table 1 is due to the reduction in the number of Work Groups required to process the workload , as
the size of each Work Group increases (i.e., the increased parallelism exposed).

Time [ms]
Kernel1 [2] 1M 2M 4M
WGsize = 1 34513.66 69171.53 134968.23

WGsize = 4096 2092.25 4178.39 8384.41
Table 1. FPGA Naive kernel execution times

It can be seen that, for the case of 1M keys, with our naive OpenCL kernel, we achieve a speedup of ⇠16x going from a
WGsize of 1 to a WGSize of 4096.

3. Further OpenCL optimisations of the lookup3 function

In this section we provide an overview of how we have exploited OpenCL to carry out further optimisations of the lookup3

function running on the FPGA. By far, the most significant improvements in performance are a result of effective use
of OpenCL vector types in combination with a judicious use of if/else branching, which, in effect, reduces the number
of memory transactions to off-chip memory on the FPGA platform. As well as these optimisations, we have included
additional optimisations recommended by the SDAccel User Guide [5], which we mention here first as these are included
as part of further vector-type-based optimisations that we discuss in more detail below.

3.0.1 Static OpenCL Work Group dimension at compile time

Fixing the OpenCL Work Group dimensions at compile time is a recommended optimization in the SDAccel User Guide
[5], where, by determining loop trip counts, the circuit can be optimized for a given Work Group dimension. Listing 3
demonstrates how to apply this optimization in SDAccel using the attribute reqd work group size specified by the
OpenCL standard [6].

Listing 3. Specifying compile time work group size (WGsize)

1 __kernel void

2 __attribute__((reqd_work_group_size(4096, 1, 1)))

3 hashlittle(...){ }

3.0.2 Pipelining Work Items

In Listing 4 and implementations thereafter, we wrap the body of the kernel in the SDAccel attribute attribute ((xcl pipeline workitems)){},
which indicates to SDAccel to pipeline Work Items instructions inside of each and every Work Group [5].

3.0.3 Maximum number of memory ports

By design, SDAccel will aim to make the most efficient use of resources on the device, often minimising overall resource
utilisation in the process. By default, SDAccel will therefore currently use one memory port to access off-chip memory
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for all the arguments of the kernel, which can result in a performance bottleneck when accessing off-chip memory. By
explicitly specifying the maximum number of memory ports available with set property max memory ports

true [get kernels <kernel name>] at compile time, SDAccel subsequently instantiates one memory port per
kernel argument that is decorated as a global buffer( global), which in some cases, can increase performance. [5].

3.0.4 Vector types

In listing 2 we have employed the uint datatype for all the arguments of the kernel, which results in fetches of 4 bytes or
32 bits per memory transaction to off-chip memory, resulting in sub-optimal performance. In order to improve performance,
we have modified the Kernel1 to support OpenCL vector types for the first time, where the maximum vector width
supported by SDAccel is 512 bits or 64 bytes. The vector implementation of our kernel uses a key with a maximum of 60
bytes in size, making it possible to fit an entire key within 64 bytes (with padding of the last 4 bytes). As a result, an entire
key can be transferred from off-chip global memory in a single memory transaction. However, OpenCL vector types cannot
be used in the kernel as found in listing 2 directly as the elements in the vector data type have to be addressed explicitly. To
achieve this we unroll the loop manually by switching to an ‘if’ branch for every iteration of the loop in listing 2, where
the resulting kernel is shown in listing 4. For each access we load an entire key as a vector of sixteen elements and compute
parts of the key in each of the ‘if’ branches. This implementation will hereafter be referred as Kernel2.

Listing 4. OpenCL-optimised hashing kernel function (Kernel2)

1 __kernel void __attribute__((reqd_work_group_size(4096, 1, 1)))

2 hashlittle(__global const uint16

*

restrict keys, ... , __global uint16

*

restrict out){

3 __attribute__((xcl_pipeline_workitems)){

4 const uint index = get_global_id(0);

5
6 size_t length = read16(lengths[index/16], id%16);

7 uint initval = read16(initvals[index/16], id%16);

8
9 setupInitialState(a, b, c);

10
11 if(length>12){

12 a += keys[index].s0;

13 b += keys[index].s1;

14 c += keys[index].s2;

15
16 mix(a,b,c);

17
18 length -= 12;

19 ++rem;

20 }

21
22 ....

23
24 if(length>12){

25 a += keys[index].s9;

26 b += keys[index].sa;

27 c += keys[index].sb;

28
29 mix(a,b,c);

30
31 length -= 12;

32 ++rem;

33 }

34
35 c = mixVectorReminder(a, b, c, index, length);

36 write16(out, index/16, index%16, c);

37 }

38 }

We find that while vector types allowed us to read more data for each transaction an analysis of latency reports suggests that
effective pipelining of the loop is impeded. To test this further we switched to employing ‘if/else’ conditional branching
that explicitly dictates where the code will exit, allowing for the feeding of data into the pipeline in every cycle, irrespective
of the key size. The resulting kernel is shown in listing 5 and will be referred to as Kernel3.

Listing 5. OpenCL-optimised hashing kernel function (Kernel3)

1 __kernel void __attribute__((reqd_work_group_size(4096, 1, 1)))

2 hashlittle(__global const uint16

*

restrict keys, ... , __global uint16

*

restrict out){

3 const uint index = get_global_id(0);
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4
5 __attribute__((xcl_pipeline_workitems)){

6
7 /

*

reading from specific positions in vector types

*

/

8 setupInitialState(a, b, c);

9
10 bool done = false;

11 if(length > 12){

12 a += keys[index].s0;

13 b += keys[index].s1;

14 c += keys[index].s2;

15
16 mix(a,b,c);

17 length-=12;

18 } else {

19 done = true;

20 rem0 = keys[index].s0;

21 rem1 = keys[index].s1;

22 rem2 = keys[index].s2;

23 }

24
25 ...

26
27 if(length > 12) {

28 a += keys[index].sc;

29 b += keys[index].sd;

30 c += keys[index].se;

31
32 mix(a,b,c);

33 length-=12;

34 } else {

35 if(!done) {

36 done = true;

37 rem0 = keys[index].sc;

38 rem1 = keys[index].sd;

39 rem2 = keys[index].se;

40 }

41 }

42
43 uint tmp = mixVectorReminder(a,b,c,rem0,rem1, rem2, length);

44 write16(out, index/16, index%16, tmp);

45 }

46 }

As mentioned, the vector implementation of the kernel uses a key of maximum 60 bytes in size, which makes it possible
to fit an entire key within 64 bytes. In this way an entire key can be transferred from off-chip global memory in a single
memory transaction. However, when combining different bitwidth reads of variables such as length (4 bytes) and the keys
(64 bytes), asymmetric memory transactions can prevent new data being fed in every cycle. While it is straightforward to
apply 64 byte memory reads to the keys, this is not the case for lengths or initialisation values. In order to employ the
same kernel with minimal modification to use vector types, replication of the length and initialisation values to occupy an
entire vector datatype was required. Therefore, length and initialization values were also transferred as 64 byte memory
transactions, where only the first 4 bytes of each 64 byte vector were used. Listing 6 shows the relevant changes to the
implementation, which is hereafter referred to as Kernel4.

Listing 6. OpenCL-optimised hashing kernel function (Kernel4)

1 uint tmp = mixVectorReminder(a,b,c,rem0,rem1, rem2, length);

2 out[id] = tmp;

4. Results

In this section we provide a summary of results in Table 2, where we show execution times in milliseconds (ms) for each
of our OpenCL implementations of the lookup3 hashing function. From Table 2, it can be seen that the highest speedup
relative to our naive OpenCL kernel Kernel1 is achieved with Kernel4 for the case of 1M keys, resulting in a ⇠ 3.5x
speedup. It should be stated at this point that we have implemented further lower-level performance optimisations, which
result in up to ⇠187x speedup relative to the naive OpenCL kernel, and which we are happy to discuss further via private
communication.

While such optimizations are more low-level in nature, these are expected to become transparent to the user with upcoming
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Time[ms]
Kernel (WGsize=4096) 1M 2M 4M

Kernel1 [2] 2092.25 4178.39 8384.41
Kernel2 [3.0.4] 1478.11 2957.99 5913.94
Kernel3 [3.0.4] 1077.01 2155.21 4304.54
Kernel4 [3.0.4] 596.20 1195.63 2362.02

Table 2. Execution time (ms) for each of the kernel designs describe above.

releases SDAccel, clearly demonstrating the huge potential of SDAccel as a means of empowering software developers to
exploit FPGAs in the data centre much more rapidly than is currently possible with more cumbersone hardware-centric
RTL flows.

5. Conclusions

We have reported on several implementations of an OpenCL-based design of a Bob Jenkins lookup3 hashing function
application on the Xilinx Virtex 7-based ADM-PCIE-7V3 platform using the SDAccel development environment. In
particular, we have demonstrated how to best exploit the features of the OpenCL programming model available through
SDAccel to improve performance by up to ⇠3.5x relative to a naive OpenCL design of the application in question. It should
be emphasised that nearly all of the performance gains described can be achieved through the high-level programming
abstraction afforded by SDAccel’s OpenCL development environment, with lower level optimisations expected to become
transparent to the user soon. Such capability represents the potential for a huge step-change in productivity during the
design phase of software defined solutions on heterogeneous platforms and, more generally, now provides organisations
working in HPC and Technical Computing with a much lower-barrier-to-entry to exploiting the high performance, low
energy capabilities of FPGA-based platforms.
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